Problem-Based Learning in STEM Education

Project Kaleidoscope Conference
Yale University
October 30, 2009

Presented by:
Nicholas Massa
Springfield Technical Community College
Michele Dischino
Central Connecticut State University
Judith Donnelly
Three Rivers Community College
Fenna Hanes
New England Board of Higher Education
Agenda

- What is Problem Based Learning?
- The PHOTON PBL Three-Level Model
 A Tour of the PHOTON PBL Challenges
- New Project! STEM PBL – Problem-Based Learning for Sustainable Technologies
- Open Discussion
What is Problem-Based Learning?

- Originally developed for medical school education in the 1970s.
- PBL teaches students both content and problem solving skills through engagement with authentic real-world problems.
PHOTON PBL

What is Problem-Based Learning?

Characteristics of PBL

- Students learn that problem solving is a process.
Benefits of PBL

- Improves students’ understanding and retention
- Promotes a “deep approach” to learning
- Improves critical thinking and problem solving skills
- Improves motivation for learning
- Improves students’ ability to transfer skills and knowledge to new situations
PHOTON PBL

What is Problem-Based Learning?

Characteristics of PBL

- Learning occurs collaboratively in small groups
- Problems are presented before any formal preparation has occurred - the problem itself drives the learning
- New information is acquired via self-directed learning
- Instructor acts as a facilitator providing focused instruction and guidance on an “as needed” basis
Finding good PBL problems

- Open-ended with more than one possible solution
- Ill-structured with insufficient information to facilitate inquiry
- Based on real-world issues that engage students' interests
- Require cooperation and teamwork
- Builds on prior knowledge
- PHOTON PBL problems have been solved by partner organization to allow students to compare and contrast their own solutions
Designed to acclimate students to the PBL method

1. Structured Challenge
 - Instructor led, least student autonomy

2. Guided Challenge
 - Instructor guided

3. Open-ended Challenge
 - Instructor as facilitator, most student autonomy
Three-year NSF-ATE Project

Project goals:
- Create 8 multimedia PBL “Challenges” in photonics technology in collaboration with photonics industry and university partners
- Recruit and train 28 (now over 50) HS & college STEM educators to field test PBL Challenges in their classrooms
- Create a comprehensive teacher’s guide for implementing PBL Challenges in STEM classrooms
- Conduct research on the efficacy of PBL in STEM education
The Photon PBL Challenge Website

http://pblprojects.org

For PBL Implementation Guide contact:
Fenna Hanes
New England Board of Higher Education
Boston, MA
fhanes@nebhe.org

For Additional Resources:
http://www.photonprojects.org
New Project!

- *Design, develop and field-test six interdisciplinary multi-media STEM Challenges focused on sustainable technology problems faced by real researchers and businesses.*

- *Recruit 25 high school and college educators to participate in an online two-year professional development program to prepare instructors to integrate PBL methods and Challenge materials into their STEM classes.*

- *Develop a one-semester college course for pre-service education students in PBL instructional methods.*

- *Conduct research on the efficacy of PBL instruction in STEM education*
For more information go to:

http://stempbl.org

Or contact:

Fenna Hanes
New England Board of Higher Education
Boston, MA
fhanes@nebhe.org
617-357-9620 x 129
PHOTON PBL
Engaging Students

Romanian HS Students using Photon PBL “Whiteboards”
PHOTON PBL
Engaging Students

STCC LEOT students using Photon PBL “Whiteboards”

STCC LEOT Students testing problem solution
PHOTON PBL
Engaging Students

Boston public HS Students Build Integrating Sphere

STCC Students Build Integrating Sphere
Drexel University students work on a PBL Challenge.

"The Challenge opened my eyes to a whole new world... I wonder how much more I could have learned if this method had been an integral part of the core curriculum of STCC "

Porfirio Creque – STCC Class of 2008
Concluding Remark

An educational experience that emulates the world in which students will apply their knowledge and skills will produce proficient individuals capable of adapting to the ever-changing workplace of the 21st century.